产品中心PRODUCT CENTER

在发展中求生存,不断完善,以良好信誉和科学的管理促进企业迅速发展
资讯中心 产品中心

首页-产品中心-GZAF-1000T系列振动声学指纹在线监测工作原理

GZAF-1000T系列振动声学指纹在线监测工作原理

更新时间:2025-11-22      点击次数:4

系统功能:结合变压器/电抗器的带电检测、智能巡检以及其他在线监测状态量,进行数据的多参量融合分析,形成基于多源数据的故障预警机制,多参量融合分析不仅提高了识别故障的准确性,而且还能**降低因单个参量判别故障带来的误报。例如,对于变压器疑似问题地诊断可结合负荷、损耗、绕组机械振动信号、油温、以及历史电流电压情况分析,在监测到变压器/电抗器地振动声学指纹频谱时,系统可以自动去查询变压器/电抗器地历史电流和电压信号,如果发现在某段时期确实有大电流冲击,可给出预警:变压器/电抗器可能存在绕组变形地异常。GZAF-1000S系列高压开关振动声学指纹监测系统--GIS及开关柜的断路器监测技术背景。GZAF-1000T系列振动声学指纹在线监测工作原理

GZAF-1000T系列振动声学指纹在线监测工作原理,振动声学指纹在线监测

采用1路电流传感器获取有载分接开关驱动电机电流信号,电流传感器安装于驱动电机电源线处。采用3路振动传感器检测变压器/电抗器绕组及铁芯运行状况,传感器通常选取于上夹件底部、非冷却器侧油箱表面中部及油箱顶部中心点。为保持检测点的同一性,便于后期历史数据对比,建议所有振动传感器底座长期固定在变压器/电抗器外壁上。传感器安装示意图如下图3所示,变压器/电抗器声学指纹监测系统所有传感器单元均与变压器/电抗器本体无电气连接,安装简单方便,适用于在线监测或带电检测。(注:传感器数量及安装位置可根据具体技术规范或方案调整。)隔离开关振动声学指纹在线监测软件功能GZAF-1000S系列高压开关振动声学指纹监测系统--敞开式断路器监测技术背景。

GZAF-1000T系列振动声学指纹在线监测工作原理,振动声学指纹在线监测

系统结构:GZAF-1000T系列变压器/电抗器振动声学指纹监测系统由压电式加速度传感器、驱动电机电流传感器、数据采集装置、云服务器(采用B/S结构)、通讯子系统及供电系统构成,系统机构图如下图2所示。传感器:GZAF-1000T系列变压器/电抗器振动声学指纹监测系统传感层由6路压电式加速度传感器及1路电流传感器构成,各传感器外观及参数如下表1所示。压电式加速度传感器集成电荷放大器,将振动信号转换成与之成正比的电压信号;电流传感器采用微型卡扣结构,便于现场安装,节省空间。采用3路压电式加速度传感器获取有载分接开关振动信号,振动传感器通过固定底座安装在变压器/电抗器外壁,安装位置通常选取平行于分接开关垂直传动杆方向,且尽量靠近分接开关触头组处。采用1路电流传感器获取有载分接开关驱动电机电流信号,电流传感器安装于驱动电机电源线处。采用3路振动传感器检测变压器/电抗器绕组及铁芯运行状况,传感器通常选取于上夹件底部、非冷却器侧油箱表面中部及油箱顶部中心点。

重合度对比如图9所示,包络分析后可快速实现历史信号重合度对比分析,更直观地判断有载分接开关运行状态。为量化信号重合度对比,系统引入互相关系数的计算。当实时采集信号包络曲线与正常状态包络曲线互相关系数接近1时,实时采集的信号接近正常运行状态;当互相关系数接近0时,有载分接开关可能存在故障。能量分布曲线基于小波变换的振动信号多分辨率分析结果如下图10所示。原始信号经8层分解后产生第8层的近似分量和第1层至第8层的详细分量,计算各层详细分量信号能量,可获得信号能量分布曲线。对比正常状态与异常状态能量分布曲线,可判断有载分接开关运行状态,并提取互相关系数、最大值、平均值、峰度、偏度作为状态诊断特征参量。图11为正常状态与异常状态振动信号能量分布曲线对比。GZAF-1000S系列高压开关振动声学指纹监测系统遵循标准。

GZAF-1000T系列振动声学指纹在线监测工作原理,振动声学指纹在线监测

振动声学指纹监测技术的应用意义:我公司基于振动声学指纹监测技术研制的GZAF-1000系列监测系统适用于变压器/电抗器(绕组、有载分接开关、铁心等)、开关类(GIS、敞开式断路器、隔离开关、开关柜等)等电力设备的带电检测、在线监测与故障诊断,不影响被测设备正常运行,且与被测设备无电气连接,具有安装方便、安全、可靠等优点,主要意义如下:1、采用带电检测/在线监测方式,不影响主设备正常运行,降低了电网风险;2、减少了人员进站检查的运维成本;3、监测方式与设备无电气连接,具有安全、可靠、安装方便等优点;4、采用独特的时域分析、包络分析、重合度对比、时频矩阵分析等方法,并提峰值频率、总谐波畸变率、频谱互相关系数、频率复杂度、振动平稳性、能量相似度、振动相关性等特征参量等特征参量,提高在线监测准确度。5、内置基于海量样本的大数据和人工智能技术而建立的**分析型数据库,可真实反应设备运行状态,有效诊断绕组变形、机械卡涩、触头磨损、电动机构拒动等故障程度和类型;6、符合智慧变电站建设原则,监测系统的IED具备边缘计算能力,就地采集并处理振动声学指纹及其它信号,完成分析计算后根据传输层要求统一通讯接口及数据结构。GZAF-1000T系列变压器(电抗器)振动声学指纹监测云平台服务器。GZAF-1000T系列振动声学指纹在线监测工作原理

GZAF-1000T系列变压器(电抗器)振动声学指纹监测传感器。GZAF-1000T系列振动声学指纹在线监测工作原理

包络分析:为提高在线监测的准确度,GZAF-1000T系统的数据采集装置通常采用高采样率获取振动声学信号及驱动电机电流信号,然而大量的数据不利于快速、准确存储与分析。因而采用包络分析,简化并反映原始信号特征,便于后续分析与处理。传统希尔伯特变换进行包络分析时存在提取深度不足、存在幅值偏差等问题,因此,GZAF-1000T系统采用小波变换和希尔伯特变换结合的信号包络分析。有载分接开关振动声学信号和驱动电机电流信号包络分析如下图8的A和B所示。GZAF-1000T系列振动声学指纹在线监测工作原理

关注我们
微信账号

扫一扫
手机浏览

Copyright©2025    版权所有   All Rights Reserved   广州钜恒金属制品有限公司  网站地图  电脑端